Tech apollo50
American astronaut Neil Armstrong (1930 - 2012), commander of the Apollo 11 lunar mission, in training in the Apollo Lunar Module Mission Simulator at the Kennedy Space Center's Flight Crew Training Building, Florida, 19th June 1969. Just over a month later, he became the first man ever to set foot on the moon. (Photo by NASA/Getty Images)

A mobilunk erősebb, mint az Apollo-11 számítógépe, de mégis az utóbbival indulnánk a Holdra

Korábban a témában:

Az elmúlt ötven évben a NASA-nak köszönhetően rengeteg dolgot megtudtunk a világegyetemről, de az űrügynökség eddigi legnagyobb érdeme kétségkívül az volt, amikor 1969-ben embert vitt a Holdra. Még nagyobb az érdem, ha belegondolunk: a NASA mindezt olyan technológiával hajtotta végre, amivel ma már a telefonunk sem működne. Azt viszont azért érdemes megjegyezni, hogy a használt eszközök a maguk idejében csúcstechnológiának számítottak – az Apollo-11 fedélzeti számítógépeiben alkalmaztak például először szoftvereket valós idejű problémamegoldásra.

APOLLO 50

1969. július 20-án a NASA történelmet írt: az amerikai űrhivatal elsőként juttatott embert a Holdra. Az 50. évforduló alkalmából a 24.hu július 15. és 28. között cikksorozattal tiszteleg az emberiség egyik legnagyobb lépése előtt.

Ahhoz, hogy megértsük, miért lenne okosabb még mindig egy Apollo-11 szintű számítógéppel a Holdra menni egy okostelefon helyett, fontos tudni, hogy az űrküldetések számítógépeit egy nagyon specifikus célra tervezték, és arra tökéletesen meg is feleltek, sőt jócskán meg is előzték a korukat. A teljesítményben hasonló személyi számítógépek csak egy évtizeddel később kezdtek el megjelenni: az Apple II például már olyan kategória volt, ami az űrhajókban található gépek szintjén mozgott, de csak 1977-ben lett elérhető. Az Apollo-11 egyébként összesen négy számítógéppel indult a Holdra:

  • az Apollo Guidance Computer (AGC) két tagja volt tulajdonképpen a központi számítógép, az egyik a parancsnoki modulban, míg a másik a leszálló modulban kapott helyet,
  • a Launch Saturn Digital Computer (LSDC) a kilövést irányította,
  • az Abort Guidance Systemet (AGS) pedig szerencsére sosem használták, ez ugyanis egy vészhelyzet esetén vette volna át az irányítást.

Az Apollo-11 rendszere úgy működött, hogy a különböző programok aszerint foglalták le a teljesítményt, hogy éppen melyikük végzett fontosabb feladatot – így például, ha a vészrendszerre volt éppen szükség, az háttérbe szorította a többi programot, és teljes hatékonysággal működött. Ezt az akkoriban még újszerű megoldást a NASA később az összes emberes űrmisszióra alkalmazta.

Apollo Guidance Computer. Forrás: Wikipedia

De hogy a számokat is mutassuk: a fedélzeti számítógépekben 2k RAM és 36k ROM volt. Egy mai okostelefonba átlagosan 6-8 GB RAM-ot raknak, és 128 GB a ROM, azaz a tárolókapacitás. Attól függően, hogy éppen melyik csúcsmodellt nézünk, egy modern telefon teljesítménye akár több milliószorosa is lehet az Apollo-11 fedélzeti számítógépeinek – de utóbbinak volt egy fontos tulajdonsága, ami okán mégis csak inkább azzal kellene a Holdra menni:

hibabiztosra tervezték.

Ez persze nem azt jelenti, hogy nem merülhetett fel probléma a rendszer működésében, inkább arról van szó, hogy ha bármi miatt leállt vagy lefagyott volna a fedélzeti számítógép, képes volt magától újra felállni, és tenni a dolgát – ezt egy modern mobiltelefontól nem mindig lehet elvárni, enélkül pedig könnyen katasztrófába torkollna bármilyen űrmisszió.

Persze már csak azért sem érdemes a mobiltelefonokat az űrtechnológiával összehasonlítani, mert a NASA az elmúlt ötven évben nem tétlenkedett, hanem újra csúcstechnológiát fejlesztett. Az Apollo-11 űrhajósait például egy Saturn V rakéta vitte a világűrbe, és küldte a Hold felé, ami

akkoriban igazi rekordtartónak számított 111 méteres magasságával és 2,8 millió kilogrammos tömegével.

Ez a monstrum képes volt maximálisan 118 ezer kilogrammot szállítani, a kor igazi sikersztorijának számított. A NASA-nál azonban már épül a Space Launch System, vagyis az SLS, ami arra készül, hogy a NASA-nak ne kelljen magán-űrcégeket igénybe venni ahhoz, hogy a világűrbe juthassanak, és az oroszoktól se kelljen segítséget kérniük, ha elindulnak, tegyük fel, a Marsra. Az SLS 116 méteres, és képes lesz 13 tonnányi rakományt szállítani egy távolabbi úti célra is, valamint 15 százalékkal több tolóerőt produkál majd, mint a legendás, azóta nyugdíjazott Saturn V.

Forrás: NASA/MSFC

És nemcsak rakétatechnológiában, de üzemanyag terén is újít az űrügynökség: nemrég jelentették be, hogy elindul az első olyan műhold, ami már környezettudatos üzemanyaggal fog működni. Persze a projekt még csak próba, de ha beválik, és minden úgy zajlik, ahogy a kutatók azt kiszámolták, akkor a hidroxil-ammónium-nitrát üzemanyag és oxidálószer keverék sokkal biztonságosabban, és ami szintén fontos, környezetkímélőbben tudja majd szállítani az embereket a világűrbe. Az Apollo-11 misszió során használt Saturn V kerozinnal és folyékony hidrogénnel működött, ami, pláne a folyékony oxigénnel együtt, egyáltalán nem volt biztonságos, ráadásul rengeteg káros anyagot juttatott a légkörbe.

Élőben is kipróbálja a NASA az első zöld rakéta-üzemanyagot
Újítana az űrügynökség, az új üzemanyag környezettudatosabb és biztonságosabb lehet, mint a jelenleg használt.

Érdekesség, hogy bár a NASA rengeteget fejlődött az elmúlt 50 évben, az űreszközök még mindig jócskán elmaradnak teljesítményben a legmodernebb elektronikus kütyük mögött: a Marson gurulgató Curiosity processzora például meg sem közelíti egy átlagos okostelefonét, hiszen, ahogy

az Apollo-11 esetében is, nem az a cél, hogy képeket lehessen rajta nézegetni, vagy hogy gyorsan induljon a YouTube.

A Curiosity két számítógépe 200 megahertzes BAE RAD750 mikrocsippel működik, mindegyikben 2 GB-nyi flashmemória, 256 megabájt RAM, valamint 256 kilobájt törölhető és programozható ROM található. Összehasonlításképp, az egyik legutóbbi telefon, amit teszteltünk, az Asus Zenfone 6 például 6 és 8 GB-os RAM-mal kerül a boltokba, és 64, 128, vagy 256 GB-nyi NAND flash memóriát találunk benne.

A Curiosity is azért így készült, mert ekkora teljesítmény és memória elég az általa elvégzett kutatásokhoz, viszont így volt erőforrás arra, hogy megfelelő minőségben készüljenek az eszközök: itt például a radioaktivitásnak ellenálló alkatrészek voltak a prioritás, meg persze az, hogy nagyon szívós és tartós legyen a rendszer. Ez még mindig nem változott az elmúlt ötven évben, hiába a technológiai fejlődés: a biztonságos működés az első, nem a teljesítmény.

Kiemelt kép: NASA/Getty Images

Ajánlott videó mutasd mind

Ha kommentelni, beszélgetni, vitatkozni szeretnél, vagy csak megosztanád a véleményedet másokkal, a 24.hu Facebook-oldalán teheted meg. Ha bővebben olvasnál az okokról, itt találsz válaszokat.

A cikkhez ide kattintva szólhatsz hozzá.
Image: 73894321, Orsós János, az Dr. Ámbédkar Gimnázium, Szakközépiskola, Szakiskola, Általános Iskola roma származású alapítója., Place: Miskolc, Hungary, Model Release: No or not aplicable, Property Release: Yes, Credit: smagpictures.com
Nézd meg a legfrissebb cikkeinket a címlapon!
24-logo

Engedélyezi, hogy a 24.hu értesítéseket
küldjön Önnek a kiemelt hírekről?
Az értesítések bármikor kikapcsolhatók
a böngésző beállításaiban.